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ABSTRACT

Node.js is a popular JavaScript server-side framework with an
efficient runtime for cloud-based event-driven architectures.
Its strength is the presence of thousands of third-party
libraries which allow developers to quickly build and deploy
applications. These very libraries are a source of security
threats as a vulnerability in one library can (and in some
cases did) compromise one’s entire server.
In order to support the least-privilege integration of li-

braries, we developed NodeSentry, the first security archi-
tecture for server-side JavaScript. Our policy enforcement
infrastructure supports an easy deployment of web-hardening
techniques and access control policies on interactions between
libraries and their environment, including any dependent
library.
We discuss the implementation of NodeSentry, and

present its practical evaluation. For hundreds of concurrent
clients, NodeSentry has the same capacity and throughput
as plain Node.js. Only on a large scale, when Node.js
itself yields to a heavy load, NodeSentry shows a limited
overhead.

Categories and Subject Descriptors

K.6.5 [Management of Computing and Information
Systems]: Security and Protection; H.3.5 [Information
Storage and Retrieval]: Web-based services

Keywords

Web security, JavaScript

1. INTRODUCTION
Services offered on the web have a standard conceptual

architecture: a client (or tenant) accesses a web application
which talks to one or more databases [8]. In order to serve
multiple clients, the traditional approach (represented by e.g.,
Apache and IIS) has been to duplicate the entire path for each
client at the process level. In order to cope with increasing
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demands, modern services (e.g., Salesforce, SAP-ByDesign)
have evolved to multi-tenancy event-driven architecture:
different tenants access the same pipe which takes care of
the different events by an event-driven program [41].
The major reason behind the success of event-driven pro-

grams is that they offer developers a much finer control
(and therefore better performance) than switching between
application processes [41, 17]. Among the various event-
driven programming languages, Node.js is a widely successful
platform that combines the popular JavaScript language
with an efficient runtime tailored for a cloud-based event
architecture [34].
JavaScript has many advantages for web development [14].

It is the de facto dominant language for client-side appli-
cations and it offers the flexibility of dynamic languages.
In particular it allows the easy combination or mash-up of
content and libraries from disparate third parties. Such
flexibility comes at a price of significant security problems
[26, 33], and researchers have proposed a number of solutions
to contain them: from sandboxing (e.g., Google’s Caja or [35,
2]) and information flow control [9, 10] to instrumenting the
client with a number of policies [30], or trying to guarantee
control-flow integrity at a web-firewall level [6]. Bielova
presents a good recent survey on JavaScript security policies
and their enforcement mechanism within a web browser [4].
These proposals are appropriate for client-side JavaScript
but cannot be lifted to server-side code. At first, they assume
that the client is not running with high-privileges; second
they command a significant overhead acceptable at client
side but not at server side. For example, Meyerovich’s et
al., [30] report some of the best micro-benchmarks for client
side JavaScript and still report an overhead between 24% to
300% of the raw time.
Security problems are magnified at server side: applications

run without sandboxing and serve a large number of clients
simultaneously; server processes must handle load without
interruptions for extended periods of time. Any corruption
of the global state, whether unintentional or induced by
an attacker, can be disastrous. Unfortunately, JavaScript
features make it easy to slip and introduce security vulner-
abilities which may allow a diversion of the control flow or
even complete server poisoning. Hence, developers should be
cautious when developing server applications in JavaScript,
yet the current trend is to build up one’s application by
loading (dynamically) a large number of third-party libraries.
Figure 2 shows the libraries integrated in one of the most
popular web application servers based on Node.js. Verifying
such a massive amount of third-party code, especially in a



language as dynamic and flexible as JavaScript, is close to
impossible [43, §6].
How do we combine the flexibility of loading third-party

libraries from a vibrant ecosystem with strong security guar-
antees at an acceptable performance price? There is essen-
tially no academic work addressing the problem of server-side
JavaScript security. Our paper targets this gap.

1.1 Contributions
This paper proposes a solution to the problem of least-

privilege integration of libraries with the following contribu-
tions:

1. NodeSentry, a novel server-side JavaScript security
architecture;

2. Policy infrastructure that allows to subsume and com-
bine common web-hardening techniques and measures,
common and custom access control policies on interac-
tions between libraries and their environment, including
any dependent library;

3. Description of the key features of NodeSentry’s im-
plementation and its policy infrastructure in Node.js;

4. Practical evaluation of the performance of our solution.

In summary we show that for hundreds of concurrent
clients NodeSentry is essentially close to its theoretical
optimum, between 250-500 concurrent clients NodeSentry

exhibits an increasing drop in capacity and after 500 move
in synch with Node.js’s own drop in performance reaching
50% of the theoretical optimum (while Node.js is at 60%).
The rest of this paper is structured as follows. Section 2

sketches the necessary background on Node.js and the se-
curity problems of its ecosystem of third-party libraries.
Section 3 describes the exact threat model and gives a general
overview of our solution, called NodeSentry. Section 4
discusses how NodeSentry can be used in practice and
how it protects against real-life attacks. In Section 5, we
exemplify several real-life policies and Section 6 gives insight
into the implementation. Section 7 discusses the quantitative
evaluation of the performance. Finally, Section 8 discusses
related work, and Section 9 summarizes the contributions.

2. BACKGROUND ON Node.js LIBRARIES
Node.js by itself only provides core system functionality

like e.g., accessing the file system or network communication.
Developers that want to build applications must therefor
often rely on third-party libraries. They are distributed as
packages, structured according to the CommonJS package
format and installable via the de facto standard "npm" pack-
age manager (by itself a JavaScript package). The official
package registry contains more than 70 thousand packages
and has more then 290 million downloads each month. Such
libraries are statically or dynamically loaded in order to
provide the corresponding services.
Node.js module loading system is very easy to use. Via

the built-in require function, modules living within the base
system, in a separate file or directory, can be included in the
application. The loading works by reading the JavaScript
code (from memory or from disk), executing that code in
its own name space and returning an exports object, which
acts as the public interface for external code. On line 2 of

1 var mime = require ('mime ')
2 var path = require ('path ')
3 var fs;
4 try { fs = require ("graceful -fs") }
5 catch (e) { fs = require ('fs ') }

Figure 1: Code excerpt that shows how different sys-
tem functionalities are exposed within the Node.js
environment by requiring specific libraries.

Figure 1, the variable path will be an object with several
properties including path.sep that represents the separator
character or the function path.dirname that returns the
directory name of a given file path.
Libraries can also be dynamically loaded at any place in

a program. For example on line 4, the program first tries
to load the "graceful-fs" library. If this load fails, e.g.,
because it is not installed, the program falls back into loading
the original system library "fs" (line 5). In this example
constant string are provided to the require function but
this is not necessary. A developer can define a variable var
lib=’fs’ and later on just call a require(lib) function
where lib is dynamically evaluated.
The resulting ecosystem is such that almost all applications

are composed of a large numbers of libraries which recursively
call other libraries. The most popular packages can include
hundreds of libraries: "jade", "grunt" and "mongoose"
make up for more than 200 included libraries each (directly
or recursively); "express", a popular web package includes
138, whereas "socket.io" can be unrolled to 160 libraries.
Figure 2 shows a bird’s eye view of the library used by

the "npm-www" JavaScript package maintainer. One of the
single nodes of this package tree, is the sub library "st" (the
fourth node from the left) which is developed specifically to
manage static files hosting for the backend of the web site 1.
As you can see, the "st" library further relies on access to
the "http" and "url" package to process URLs and on the
"fs" package to access the file system.
The quote below from a blog post of a Node.js devel-

oper clearly explains the sharing principles of the Node.js
ecosystem2:

I’m working on my own project, and was looking
for a good static serving library. I found the
best one, but sadly it was melded tightly to the
npm-www project... glad to see it extracted and
modularized!

Unfortunately, the resulting "st" turned out to be vul-
nerable to a directory traversal bug3 which allowed it to
serve essentially all files on the server, and thus leading to a
potential massive compromise of all activities.
How can one check libraries for potential vulnerabilities?

Server-side JavaScript code is not subject to changes as client-
side code, so one may hope that static analysis might work.
1http://blog.npmjs.org/post/80277229932/
newly-paranoid-maintainers
2https://github.com/isaacs/st/issues/3
3https://nodesecurity.io/advisories/st_directory_traversal
& http://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2014-3744
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Figure 2: The code that runs http://npmjs.org, which is a Node.js package itself (top image), loads a large
number of third parties libraries (which may use further libraries). The fourth node from left is the "st"
library which further uses additional libraries (bottom image). Static verification is close to impossible.

Unfortunately, the dynamic functionalities and the usage of
exceptions alone make static analysis of JavaScript packages
extremely difficult: only a handful of frameworks for static
analysis can deal with exceptions and dynamic calls [18,
16]. Further, the large quantity of libraries to be considered
(and modeled) is another major hurdle. For example JAM
requires modeling such dependencies in Prolog [15]. Run-
time monitoring seems the only alternative if it can scale up
to hundreds or thousands of concurrent requests. For client-
side JavaScript, for one client, an effective implementation
like ConScript already tallies a minimum 25% up to 300%
overhead.

3. THREAT MODEL AND SOLUTION
The server-side scenario, discussed earlier, assumes that

libraries are actually executed on the server with server priv-
ileges. Hence, we assume non-malicious libraries, although
potentially vulnerable and exploitable (semi-trusted), as for
example the "st" library. They might end up using malicious
objects or doing something they were not intended to do.
The purpose of our security model is to shield the potential

untrusted libraries from some of the other libraries loaded in
the package which may offer a functionality that we consider
core. For example we may want to filter access by the semi-
trusted library to the trusted library offering access to the
file system.
We consider outright malicious libraries out of scope from

our threat model, albeit one could use NodeSentry equally
well to fully isolate a malicious library. We believe that the
effort to write the policies for all other possible libraries to
be isolated from the malicious one by far outweigh the effort
of writing the alleged benign functionalities of the malicious
library from scratch.
Given the fact that NodeSentry has a programmatic

policy, and that policy code can effectively modify how the
enforcement mechanism functions, it could be possible to
introduce new vulnerabilities into the system via a badly
written policy. However, we consider the production of safe
and secure policy code an interesting but orthogonal – and
thus out-of-scope – issue, for which care must be taken by
the policy writer to prevent mistakes/misuse.
The key idea of our proposal is to use a variant of an inline

reference monitor [38, 13] as modified for the Security-by-

Contract approach for Java and .NET [11] in order to make
it more flexible. Namely, we do not embed the monitor into
the code as suggest by most approaches for inline reference
monitors but inline only the hooks in a few key places, while
the monitor is an external component. In our case this has
the added advantage of potentially improving performance
(a key requirement for server-side code) as the monitor can
now run in a separate thread and threads which do not call
security relevant actions are unaffected.
Further, and maybe most importantly, we do not limit our-

selves to purely raising security exceptions and stopping the
execution but support policies that specify how to “fix” the
execution [12, 5, 10]. This is another essential requirement
for server side applications which must keep going.
In order to maintain control over all references acquired by

the library, e.g., via a call to "require", NodeSentry ap-
plies the membrane pattern, originally proposed by Miller [31,
§9] and further refined in [44]. The goal of a membrane is to
fully isolate two object graphs [31, 44]. This is particularly
important for dynamic languages in which object pointers
may be passed along and an object may not be aware of who
still has access to its internal components.
Intuitively, a membrane creates a shadow object that is a

“clone” of the target object that it wishes to protect. Only the
references to the shadow object are passed further to callers.
Any access to the shadowed object is then intercepted and
either served directly or eventually reflected on the target
object through handlers. In this way, when a membrane
revokes a reference, essentially by destroying the shadow
object [44], it instantly achieves the goal of transitively
revoking all references as advocated by Miller [31].
The NodeSentry-handler intercepts the object references

received by the semi-trusted library and can check them for
compliance with the policy. Our policy decision point can
be seen as a simple automaton: if the handler receives a
request for an action and can make the transition then the
object proxied by the membrane is called and the (proxied)
result is returned; if the automaton cannot make a transition
on the input (i.e., the policy is violated), then a security
countermeasure can be implemented by NodeSentry or,
in the worst case scenario, a security exception will be
automatically raised.
We have identified two possible points where the policy
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Figure 3: NodeSentry allows policies to be installed
on the public interface of the secure library (Upper-
Bound policies) and/or on the public interface of any
depending library (Lower-Bound policies).

hooks can be placed that fall together with two distinct types
of policies: on the public interface of the library itself with
the outer world, on the public interface of any depending
library (both built-in, core libraries and other third-party
libraries), or in both places. The choice of the location
determines two type of policies:

Upper-Bound policies are set on each member of the
public interface of a library itself with the outer world.
Those interfaces are used by the rest of the application
to interact with it. It is the ideal location to do all kinds
of security checks when specific library functionality is
executed, or right after the library returns control.
For example, these checks can be used (i) to implement
web application firewalls and prevent malformed or
maliciously crafted URLs from entering the library or
(ii) to add extra security headers to the server response
towards a client. Another example of a useful policy
would be to block specific clients from accessing specific
files via the web server.

Lower-Bound policies can be installed on the public in-
terface of any depending library, both built-in core
libraries (like e.g., "fs") or any other third-party li-
brary.
Such a policy could be used to enforce e.g., an application-
wide chroot jail or to allow fine-grained access control
such as restricting reading to several files or preventing
all write actions to the file system.

Figure 3 depicts interactions with these two types of poli-
cies with the red arrows and highlights the isolated context
or membrane with a grey box. The amount of available
policy points is thus a trade-off between performance (less
points mean less checks) and security (more points mean a
more fine-grained policy).
A developer wishing to use NodeSentry only needs to

replace the require call to the semi-trusted library with a
safe_require. This approach makes it possible to implement

1 // code snippet from st.js
2 // get a path from a url
3 Mount . prototype . getPath = function (u) {
4 u = path. normalize (url. parse (u). pathname
5 . replace (/^[\/\\]?/ , '/'))
6 . replace (/\\/g, '/')
7 // ...

Figure 4: The "st" library has a potential security
issue because it does not check the file path for
potential directory traversal.

a number of security checks used for web-hardening , like e.g.,
enabling the HTTP Strict-Transport-Security header [20],
set the Secure and/or HttpOnly Cookies flags [3] or configure
a Content Security Policy (CSP) [39], in quite a modular
way without affecting the work of rank-and-file JavaScript
developers. This is described in the next section whereas we
illustrate some policy examples more in detail in Section 5.

4. USAGE MODEL
Here we describe the usage model [24] of the NodeSentry

library. The developer (such as the one whose blog entry
we have cited) has found an appropriate library for her
application.
She may now use the library to serve files to clients. As

mentioned, the library has a potential potential directory
traversal issue, as shown in Figure 4. By itself, this may
not be a vulnerability: if a library provides a functionality
to manage files, it should provide a file from any point of
the file system, possibly also using ‘..’ substrings, as far as
this is a correct string for directory. However, when used to
provide files to clients of a web server based on URLs, the
code snippet below becomes a serious security vulnerability.
An HTTP request for /%2e%2e/%2e%2e/etc/passwd, sent

by an attacker towards a server using the "st" library to
serve files, could expose unintended files.
It is of course possible to modify the original code to fix the

bug but this patch would be lost when a new update to "st"
is done by the original developers of the library. Getting
involved in the community maintenance of the library so
that the fix is inserted into the main branch may be too time
demanding, or the developer may just not be sufficiently
skilled to go fix it without breaking other dependent libraries,
or just have other priorities altogether.
In all these scenarios, which are the majority of the cases,

the application of NodeSentry is the envisaged solution.
The "st" library is considered semi-trusted and a num-
ber of default web-hardening policies are available in the
NodeSentry policy toolkit.
The only adjustment is to load the NodeSentry frame-

work and to make sure that "st" is safely required so that
the policy becomes active, as shown in Figure 5.
The policy rules in Figure 6 can then be activated in

the policy section and all URLs passed to "st" would be
correctly filtered. The policy states that if a library wants
to access the URL of the incoming HTTP request (via
IncomingMessage.url), we first test it on the presence of a
(encoded) dot character. If so, we return a new URL that
e.g., points to a file that contains a warning message.



1 require("nodesentry");
2 var http = require ("http");
3 var st= safe_require ("st");
4 var handler = st( process .cwd ());
5 http. createServer ( handler ). listen (1337);

Figure 5: After loading the NodeSentry framework,
policies can be (recursively) enforced on libraries by
loading them via the newly introduced safe_require
function.

1 if ( method === " IncomingMessage .url") {
2 var regex = new RegExp (/%2e/ig );
3 if ( regex .test( origValue ))
4 return "/ your_attack_is_detected .html";
5 else
6 return origValue ;
7 }

Figure 6: If application code requests the URL
of the incoming request, a pointer to a different
page is returned whenever malicious characters are
detected.

5. POLICY EXAMPLES
In defining the policies, we have tried to be as modular as

possible: real system security policies are best given as collec-
tions of simpler policies, a single large monolithic policy being
difficult to comprehend. The system’s security policy is then
the result of composing the simpler policies in the collection
by taking their conjunction. This is particularly appropriate
considering our scenario of filtering library actions.
If the library may not be trusted to provide access to

the file system it may be enough to implements OWASP’s
check on file system management (e.g., escaping, file traversal
etc.). If a library is used for processing HTTP requests to a
database, it could be controlled for URL sanitization. Each
of those two libraries could then be wrapped by using only
the relevant policy components and thus avoid paying an
unnecessary performance price.
As a simple example for the potential of NodeSentry

we describe how we implemented the checks behind the
‘helmet’ library4, a middleware used for web hardening
and implementing various security headers for the popular
"express" framework.
It is used to, e.g., enable the HTTP Strict Transport

Security (HSTS) protocol [20] in an "express"-based web
application by requiring each application to actually use
the library when crafting HTTP requests. Figure 7 shows
a NodeSentry policy that adds the HSTS header before
sending the outgoing server response.
The developer does not need to modify the original appli-

cation code to exhibit this behaviour. They only need to
safe_require the library whose HTTPS calls they want to
restrict. This can be done once and for all at the beginning
of the library itself, as customary in many Node.js packages.
The example in Figure 8 shows a possible policy to prevent

4https://github.com/evilpacket/helmet

1 if ( method === " ServerResponse . write ") {
2 var h = "Strict - Transport - Security ";
3 var v = "max -age =3600; includeSubDomains ";
4 response . setHeader (h, v);
5 // move on with the real
6 // ServerResponse . write call
7 }

Figure 7: Before a server response is sent towards a
client, the policy first adds the HSTS header, effec-
tively mimicking the behaviour of helmet.hsts().

1 if ( method === "fs. writeFile " ||
2 method === "fs. write " ||
3 method === "fs. writeFileSync " ||
4 method === "fs. writeSync " ||
5 method === "fs. appendFile " ||
6 method === "fs. appendFileSync ") {
7 // simply return
8 return
9 }

Figure 8: A possible policy that wants to prevent a
library from writing to the file system must cover
all availalbe write operations of the "fs" library.

a library from writing to the file system without raising an
error or an exception. Whenever a possible write operation
via the "fs" library gets called, the policy will silently
return from the execution so that the real method call
never gets executed, and thus effectively prevent writing to
the file system. It is possible to change this behavior by e.g.,
throwing an exception or chrooting to a specific directory.

6. IMPLEMENTATION DETAILS
This section reports on our development of a mature

NodeSentry prototype, which is designed to work with
the latest Node.js versions and relies on the upcoming ES
Harmony JavaScript standard. Membranes require this
standard, in order to implement fully transparent wrappers,
and also build on WeakMaps, to preserve object identity
between the shadow object and the real object (1) across the
membrane and (2) on either side of the membrane. The main
goal of wrapping a library’s public API with a membrane, is
to be sure that each time an API is accessed, our enforcement
mechanism is invoked in a secure and transparent manner.
We rely on the ES Harmony reflection module shim by

Van Cutsem5 and its implementation of a generic membrane
abstraction, which is used as a building block of our imple-
mentation and is shown in Figure 9. The current prototype
runs seamlessly on Node.js v0.10.
Our first stepping stone is to introduce the safe_require

function (see Figure 10) that virtualizes the require function
so that any additional library, called within the membrane,
can be intercepted by the framework.
This operation does not normally cost any additional

overhead since it is only done at system start-up and is
therefore completely immaterial during server operations. If
5https://github.com/tvcutsem/harmony-reflect



1 function newMembrane (ifaceObj , policyObj ) {
2 return require (" membrane ")
3 . makeGenericMembrane (ifaceObj , policyObj )
4 . target ;
5 }

Figure 9: We rely on a generic implementation,
available via the "membrane" library, to wrap a
membrane around a given ifaceObj with the given
handler code in policyObj.

1 function safe_require ( libName ) {
2 var loadLib = function () {
3 var mod = new Module ( libName );
4 var customRequire = membranedRequire ( ctxt );
5
6 mod. require = function ( libName ) {
7 return customRequire ( libName ); };
8
9 return mod. loadLibrary ();

10 };
11 return newMembrane ( loadLib (). exports , policy );
12 }

Figure 10: While loading a library with safe_require,
the original require function is replaced with one
that wraps the public interface object with a
membrane and a given (Upper-Bound) policy.

require is called dynamically we can still catch it. Either
way, each time the function is called we can now test whether
a library we want to protect has been invoked.
Line 11 of Figure 10 shows how the public interface object

(exports), gets membraned with a given policy. This line
makes it possible to enforce Upper-Bound policies.
Lower-Bound policies can be enforced because of the

custom require function that is given to the context in which
a library gets loaded (line 4 in Figure 10). Because we provide
the context with our own require function, we can intercept
all its calls from any depending library. At interception
time, we can decide if it is necessary to membrane the public
interface object of that depending library (line 8 of Figure 11).
If decided so, all interactions between the library and its
depending library are effectively subject to the Lower-Bound
policy. If not, the original interface objects get returned (line
11 of Figure 11).

7. EVALUATION
Performance is king for server-side JavaScript and the main

goal of our benchmarking experiment is to verify the impact
of introducing NodeSentry on the two major performance
drivers. We define performance as throughput, i.e., the
amount of tasks or total requests handled by our server, or as
capacity, i.e., the total amount of concurrent users/requests
handled by our server. These are standard measures for high
performance concurrent servers [19].
In order to streamline the benchmark and eliminate all

possible confounding factors, we have written a stripped
file hosting server that uses the "st" library to serve files
requests. The entire code of the server, besides the libraries

1 function membranedRequire (lib) {
2 return function (lib) {
3 var libexports ;
4
5 // [...] load the requested library
6 // and assign to libexports
7
8 if ( lowerBoundPolicyNeeds (lib )) {
9 return newMembrane ( libexports , policy );

10 } else {
11 return libexports ;
12 }
13 }
14 }

Figure 11: In order to enforce a (Lower-Bound)
policy between a library and a depending library,
its interface object must be wrapped within a
membrane.

1 // set to false for plain Node.js
2 var enable_nodesentry = true;
3
4 var st;
5 var http = require ("http");
6
7 if ( enable_nodesentry ) {
8 require (" nodesentry ");
9 st = safe_require ("st");

10 } else { st = require ("st"); }
11
12 var handler = st( process .cwd ());
13 http. createServer ( handler ). listen (1337);

Figure 12: The streamlined benchmark application
implements a bare static file hosting server, by using
the popular "st" and "http" libraries.

"http" and "st", is shown in Figure 12. The only conditional
instruction present in the code makes it possible for us to
run the benchmark test suite at first for pure Node.js and
then with NodeSentry enabled.
Each experiment (for plain Node.js and for Node.js with

NodeSentry enabled) consists of multiple runs. Each run
measures the ability of the web server to concurrently serve
files to N clients, for an increasingly large N , as illustrated
in Figure 13. Each client continuously sends requests for files
to the server throughout the duration of each experiment. At
first only few clients are present (warm-up phase), after few
seconds the number of clients step up and quickly reaches the
total number N (ramp-up phase). The number of clients then
remains constant until the end of the experiment (peak phase)
with N clients continuously sending concurrent requests for
files.
The experimental setup consists of two identical machines6

interconnected in a switched gigabit Ethernet network. One
machine is responsible for generating HTTP requests by
spawning multiple threads, representing individual users.
The second machine runs Node.js v0.10.28 and acts as the
server.

6Each machine has 32 Intel© Xeon™ CPUs ES-2650 and
64GB RAM, running Ubuntu 12.04.4 LTS.
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Figure 13: In our experimental set-up, the load
profile of the experiment varies between a minimum
(the warm-up phase) and a maximum (the peak
phase) of concurrent users. This is repeated for
N = 1..1000 concurrent users sending requests to our
server.

The results of the experiment are summarized in Figure 14.
The left graphics reports the throughput: how many requests
the system is able to concurrently serve as the number of
clients increases. This value is represented on the y-axis
while the number of clients is represented on the x-axis.
The diagonal black line plots the theoretical maximum: all
requests by all clients are served in the given time horizon.
Each blue square represent the summary of the performance
of pure Node.js for the corresponding number of clients.
The red circles denote the performance of NodeSentry

for the same number of clients. The solid lines shows
the interpolation curve with the glm method in R with
a polynomial of grade 2. The gray shaded area represent the
95%-confidence interval computed by the function.
The right graphics reports the capacity: the number of

concurrent requests handled at each time instance. The
coding of lines and data follows the same criteria as for
throughput: the blue squares and the blue line represents
Node.js data points and interpolated values whereas the
red line and the red circles represent the data points for
NodeSentry.
For the first 200-250 all systems are able to serve requests

at essentially the theoretical maximum capacity of the local
benchmarking system. The system can comfortably host the
intended amount of threads/concurrent users without slow-
down. The results in Figure 14 indicate that NodeSentry’s
loss in capacity starts from around 200-250 concurrent users
whereas the capacity of a plain Node.js instance starts to
degrade at around 500 concurrent users.

NodeSentry gradually loses capacity until it stabilizes at
approx 40% loss over the plain Node.js capacity and then
moves in synchrony with NodeSentry after 500 users. It
starts gaining again after approx 800-900 users and reduces
the gap to 10%. Therefore, we can conclude that after 500 the
losses of capacity are no longer due to NodeSentry but are
directly consequence of the loss of capacity of Node.js. The
sprint-up at 1000 clients can be easily explained: the main
Node.js system is strained to keep up with performance, it has
lost already 40% of its capacity over the theoretical maximum.
In such stressful conditions, the additional constraints posed
by NodeSentry’s policy monitor are a drop in the sea.
We do not report data beyond 1000 users (albeit we tested

it) because the behavior of plain Node.js started to exhibit
significant jitters. It showed that largely beyond 1000 the
actual capacity of our system set-up was dominated by other
factors (OS process swaps, network processes, caches, etc.

etc.). Setting up a benchmarking system that can smoothly
process 10.000 users and beyond is an interesting direction
for future work.
We’ve also measured the impact on the capacity of a server

between using only policy hook ("fs" inside the membrane)
and two policy hooks ("fs" outside the membrane).The
results shown in Figure 15 indicate that there is no significant
loss of capacity by bounding the semi-trusted library at the
different policy points and thus tightening the policy rules.
At first, we stress again that up to 200 clients there is

no difference in performance, which brings us almost at
the same level of performance for an industrial security
events monitoring system, suitable for deployment at a small
business [23]. This strikingly compares with traditional
approaches for JavaScript client side security in which even
for one client there can be a performance penalty up to
300%.
For a larger number of clients there is a trade-off between

performance and security. Such trade-off is still limited (less
than 50% overhead) and decreases when other conditions
stretch the performance of the system. Just as in normal
program code, developers must take care to write efficient
policy code. However, since policy code is written in plain
JavaScript, it can benefit from efficiency measures in the un-
derlying JavaScript engine, like e.g., a JIT compiler. Further,
we believe that there are at least three ways to optimize the
performance. The overhead is mostly due to the peculiarities
of membranes: the overhead cost of the actual invariant
enforcement mechanism, e.g., its use of a shadow object, the
run-time post-condition assertions of the trap functions of
the membrane handler, and the reliance on a self-hosted
implementation of Direct Proxies in JavaScript [44, §5&6].
These would require a significant engineering effort that
would not be justified for a research implementation.

8. RELATED WORK
There is a large body of work on JavaScript security,

but the main focus has been overwhelmingly on client-side
security. A very comprehensive survey of many of the recent
works has been provided by Bielova [4] who describes a
variety of JavaScript security policies and their enforcement
mechanism within a web browser context. Therefore we refer
to her work for additional details and only focus here on the
few works that are closest to our own contribution.

JavaScript security in general.
Restricting third-party components within a web browser

or web application by mediating access to specific security-
sensitive operations, has seen a lot of attention since its rise
the last decade.
BrowserShield [36] is a server-side rewriting system that

rewrites certain JavaScript functions to use safe equivalents.
These safe equivalents are injected into each web page via
the BrowserShield JavaScript libraries. BrowserShield makes
use of proxies for injecting its code into a web page. Self-
protecting JavaScript [28, 35] is a client-side wrapping tech-
nique that applies an advice around JavaScript functions.
The wrapping code with its advices are provided by the
server and executed first, to make sure to operate in a clean,
non-tampered environment. Browser-Enforced Embedded
Policies (BEEP) [22] is a server system that injects a policy
in a web page. The browser will call this policy script before
loading any another script, giving the policy the opportunity
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Figure 14: The solid black line is the theoretical performance of concurrent requests served in the fixed time
horizon. The red circles represent the actual performance of plain Node.js with NodeSentry; the blue squares
the performance of pure Node.js. Up to 200 clients the performance is optimal. Between 500-1000 we have
a slight drop that is anyhow below 50%.
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Figure 15: Tightening security by adding both
an Upper-Bound policy and a Lower-Bound policy
does not affect capacity, as demonstrated with
the comparison of "fs" inside or outside the "st"
membrane.

to vet the script about to be loaded. The loading process
will only continue after approval of the policy. ConScript [29]
allows the enforcement of fine-grained security policies for
JavaScript in the browser. The approach is similar to self-
protecting JavaScript [28, 35], except that ConScript uses
deep advice, thus protects all access paths to a function. The
price for using deep advice is the need for client-side support
in the JavaScript engine. WebJail [42] offers the integrator
the possibility to define a policy, in a specific, non-JavaScript
way, that restricts the behavior of a third-party component
in an isolated way. Agten et al., [2] present JSand, a server-
driven sandboxing framework to enforce server-specified secu-
rity policies in a client’s browser. Richards et al. [37] present
a security infrastructure for dealing with the gadget attacker
threat model, by allowing the specification of access control
policies on parts of a JavaScript program via leveraging the
concept of delimited histories with revocation. Fredrikson et
al., [15] have developed an off-line mechanism for the analysis
of JavaScript applications that identify the place where policy

hooks can be implemented by ConScript, thereby relying
heavily on model checking technologies. Stefan et al. [40]
introduce COWL, a JavaScript confinement system based
on a new label-based mandatory access control API within
web browsers that can be used by developers to indicate how
to restrict the communication between compartments and
external servers.

Security platforms for managed code.
Livshits [27] provides a taxonomy of runtime taint tracking

approaches, in order to preventing web application vulnera-
bilities such as cross-site scripting and SQL injection attacks.
Wei et al., [45] propose a new architecture that decom-

poses a web service into two parts, executing in a separate
protection domain. Only the trusted part can handle security-
sensitive data.
Burket et al., [7] developed GuardRails, a source-to-source

tool for building secure Ruby on Rails web applications,
by attaching security policies, via annotations, to the data
model itself. GuardRails produces a modified application
that automatically enforces the specified policies.
Hosek et al., [21] developed a Ruby-based middleware that

(1) associates security labels with data and (2) performs trans-
parent label tracking, across a multi-tier web architecture in
order to prevent harmful data disclosure.
Nguyen-Tuong et al., [32] propose a fully automated ap-

proach to harden PHP-based web applications via precise
taint tracking of data and checking specifically for dangerous
content only in parts of commands and output that came
from untrustworthy sources.

Web application firewalls (WAF).
Krueger et al., [25] describe a technique, based on anomaly

detectors, that replace suspicious parts in HTTP requests
by benign data.
ModSecurity [1] is a firewall that detects malicious behavior

by pattern matching HTTP requests with an existent rule
base. A similar proxy-based approach has been proposed
by Braun et al., [6] who implemented a policy enforcement
mechanism to guarantee the control flow integrity of web
applications.



9. CONCLUSIONS
Among the various server-side frameworks, Node.js has

emerged as one of the most popular. Its strengths are the use
of JavaScript, an efficient runtime tailored for cloud-based
event parallelism, and thousands of third-party libraries.
Yet, these very libraries are also a source of potential

security threats. Since the server runs with full privileges,
a vulnerability in one library can compromise one’s entire
server. This is indeed what recently happened with the "st"
library used by the popular web server libraries to serve
static files.
In order to address the problem of least privilege integra-

tion of third party libraries we have developed NodeSentry,
a novel server-side JavaScript security architecture that
supports such least-privilege integration of libraries.
We have illustrated how our enforcement infrastructure

can support a simple and uniform implementation of security
rules, starting from traditional web-hardening techniques to
custom security policies on interactions between libraries
and their environment, including any dependent library.
We have described the key features of the implementation
of NodeSentry which builds on the implementation of
membranes by Miller and Van Cutsem as a stepping stone
for building trustworthy object proxies [44].
In order to show the practical effectiveness of NodeSentry

we have evaluated its performance in an experiment where
a server must be able to provide files concurrently to an
increasing number of clients up to thousands of clients
and tens of thousands of file requests. Our evaluation
shows that for up to 250 clients NodeSentry has the same
server capacity and throughput of plain Node.js, and that
such capacity is essentially the theoretical optimum. At
1000 concurrent clients in a handful of seconds, when plain
Node.js’s already dropped capacity barely above 60% of the
theoretical optimum, NodeSentry is able to attests itself
at 50%.
Our complete prototype implementation (including the

full source code, test suites, code documentation, installa-
tion/usage instructions, and the "st" example) is available
at https://distrinet.cs.kuleuven.be/software/NodeSentry/
or directly installable via npm install nodesentry.
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