
FRP IoT Modules as a Scala DSL
Ben Calus, Bob Reynders, Dominique Devriese, Job Noorman, Frank Piessens

imec-DistriNet, KU Leuven, 3001 Leuven, Belgium
{bob.reynders}@cs.kuleuven.be

Abstract
With Internet of Things applications growing in size and
popularity, physical sensor networks are more often running
multiple complex applications. It becomes increasingly im-
portant to maintain these event-driven programs on embed-
ded systems. Traditionally, event-driven applications such
as sensor network applications are written using an impera-
tive style of programming where different callback routines
are registered to handle events. As the application complex-
ity grows, the inverted control flow and reliance on shared
global state makes this style of programming hard to main-
tain. Furthermore, sensor network applications are inher-
ently distributed and are written by manually managing
code-bases of sub-applications that go on all nodes separately.
If security is important, the programmer needs to manually
interface with low-level security primitives because there is
no built-in notion of components.
We propose a more maintainable approach where the

developer essentially writes a first-order FRP program, con-
taining code fragments in an embedded subset of C. From
this FRP program, we generate efficient C code to be run on
every node. Every module of the FRP program is compiled
to a separate C module, making it easy to deploy modules
to different nodes, and to enhance the security of the appli-
cation by isolating modules from other software running
on the nodes. Our implementation is based on a Scala EDSL
that we use to let the user conveniently embed fragments
of C code. The annotated C code gets compiled to Sancus, a
security architecture for IoT nodes that supports the secure
and distributed execution of the generated modules.

CCS Concepts • Software and its engineering → Do-
main specific languages;

Keywords Functional Reactive Programming, DSL, Scala

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
REBLS’17, October 23, 2017, Vancouver, Canada
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5515-5/17/10. . . $15.00
https://doi.org/10.1145/3141858.3141861

ACM Reference Format:
Ben Calus, Bob Reynders, Dominique Devriese, Job Noorman, Frank
Piessens. 2017. FRP IoT Modules as a Scala DSL. In Proceedings of
4th ACM SIGPLAN International Workshop on Reactive and Event-
Based Languages and Systems (REBLS’17).ACM, New York, NY, USA,
6 pages. https://doi.org/10.1145/3141858.3141861

1 Introduction
With Internet of Things applications growing in size and
popularity, efficiently creating and maintaining event-driven
programs on embedded systems becomes more important.
Generally, a sensor network as a whole runs one or more
applications and it contains a network of collaborating nodes.
Each node runs a sub-application that reacts to events from
its environment or one of its peer nodes to perform specific
actions.
Traditionally, event-driven applications such as sensor

network applications are written using an imperative style
of programming where different callback routines are reg-
istered to handle events. These callbacks react to events
by modifying the state of the application. As applications
grow, this state becomes more complex and harder to mutate
consistently. In short, event-driven programs written in an
imperative style become hard to maintain due to an inverted
control flow and a reliance on shared mutable state.

Furthermore, scalability problems are not limited to each
node’s sub-application. When a sensor network application
grows, so do the amount of connections between nodes.
Unchecked links between nodes become prone to type errors
and are prone to subtle errors since the topology is hidden
throughout several codebases that are each filled with code
to send and receive events.

Functional reactive programming (FRP) [1] (although ini-
tially proposed for modeling animations) is an alternative
programming model that makes it easier to reason about
event-driven code. Instead of using side-effecting callbacks,
the program is constructed by composing behaviors and
events: components representing time-dependent values.
Macro-programming [2, 3, 5], not to be confused with

Scala’s macros, is a programming model that helps a pro-
grammer with the inherently distributed model of sensor
network applications by enabling sensor network applica-
tions in one codebase instead of having several codebases to
represent sub-applications on nodes.
However, both approaches have not been combined to-

gether and have problems on their own.Macro-programming
languages often lack the ability to reason about event streams
as first class values and do not provide a type-safe connection

https://doi.org/10.1145/3141858.3141861
https://doi.org/10.1145/3141858.3141861

REBLS’17, October 23, 2017, Vancouver, Canada B. Calus, B. Reynders, D. Devriese, J. Noorman, F. Piessens

between nodes. FRP, on the other hand, is often too expen-
sive to implement efficiently on embedded devices due to a
runtime cost of the FRP runtime, particularly maintaining a
dependency graph.
In this paper we report on a work-in-progress solution

for the discussed sensor network problems as a unification
between FRP andmacro-programming languages in the form
of a Scala embedded domain specific language (EDSL). This
combination of FRP and macro-programming combines the
advantages of both and additionally, we discover that an
FRP-first solution to IoT modules is a natural fit for existing
protected module architectures which gives a programmer
additional security benefits without having to deal with an-
notations. In summary, we make the following contributions:

• We show a maintainable approach to sensor network
applications based on macro-programming techniques
and FRP.

• We demonstrate that our first-order FRP API can be
used on embedded devices by compiling the program
to C modules. We show that a direct one-to-one map-
ping from FRP modules to C modules can be used to
take advantages of existing protected module architec-
tures. The high-level DSL makes is possible to reap the
low level security benefits without manually having
to annotate the codebase.

• Weprovide a proof-of-concept implementation inwhich
Scala can be used as a meta-programming language to
generate modules for Sancus [6], a protected module
architecture.

In section 2, we demonstrate the practical use of our lan-
guage with a step-by-step solution for a parking sensor ap-
plication. In section 3, we provide an overview of the com-
pilation pipeline. We discuss our API and how it should be
used in section 4. In section 5, we explain how FRP can be
implemented to embedded protected modules with a mini-
mal performance cost despite its convenient semantics. We
conclude with some future and related work in sections 6
and 7.

2 Parking Lot with FRP
To introduce our approach we focus on the implementation
of a parking lot with a simple topology as shown in Figure 1.
There are multiple parking spots that are each fitted with
a physical node, a node has a processor, memory and I/O
devices. Each node has a timer and a sensor to detect whether
or not a car has parked and for how long. After a car has
been parked for more than a maximum amount of time an
alarmmodule should be notified. In the full scenario all nodes
are open to run multiple applications, e.g., simultaneously
run a sensor network application to compute how many
parking spots are free as well as initiate alarms for cars that
are parked for too long. In the following example we only

Alarm Node

Alarm Module

Parking Module

Sensor
Module

Timer
Module

Sensor Node

Parking Module

Sensor
Module

Timer
Module

Sensor Node

Figure 1. Parking Sensor

focus on the latter by implementing a sensor and parking
module.

Sensor Module The first re-usable module that we imple-
ment is the sensor driver module:
val sensorMod: Module[Boolean] =

createModule { implicit n: ModuleName ⇒

val sensor: Event[Unit] = ButtonEvent(Buttons.button1

)

val taken: Behavior[Boolean] =

sensor.foldp((_, state) ⇒ !state , false)

out("parkingSwitch", taken.changes)

}

The physical sensors of a parking application are represented
as buttons, conceptually they are clicked whenever a car en-
ters or leaves. In FRP, applications are written by composing
events and behaviors. Events represent values that exist at
discrete points. For example the event: ButtonEvent(Buttons
.button1) contains all actions on the parking switch. Behav-
iors represent time varying values such as taken, a value
that represents the current state of a parking spot. Notice the
implicit ModuleName, all event operations require an implicit
parameter to ensure that their definitions can be linked to
a module. The output of a sensor module is defined by re-
turning an OutputEvent[T]when creating the module, this in
turn defines the resulting module’s type: Module[T]. A mod-
ule is typed by its output and output events are those that
are explicitly created using out. In our example we define the
parkingSwitch output as a boolean event stream that reflects
whether or not a car has taken or left a spot (taken.changes).

Parking Module Next we implement the parking module,
parkingMod:
def parkingMod(timeout: Int) =

createModule[Boolean] { implicit n: ModuleName ⇒

val sensorE = ExternalEvent(sensorMod.output)

val timer = ExternalEvent(timerMod.output)

val sensorB: Behavior[Boolean] =

sensorE.foldp((_, s) ⇒ s, false)

val snapSensor = sensorB.snapshot(timer)

FRP IoT Modules as a Scala DSL REBLS’17, October 23, 2017, Vancouver, Canada

Scala (EDSL) LMS Program

(annotated) CSancus Compiler

Node Deployment

Figure 2. Compilation Pipeline

val timeTaken: Behavior[Int] =

snapSensor.foldp((taken , s) ⇒ if (taken) s + 1

else 0, 0)

val violations =

timeTaken.changes ().map(_ >= timeout)

out("violations", violations)

}

Since modules are just Scala values in our EDSL it becomes
trivial to abstract over them. We define parkingMod as a func-
tion that is parameterised over a timeout. A timeout signals
how many ticks from a timer a car is allowed to stand on the
parking spot. We use ExternalEvent to access the output of
previously defined modules, in our example we do this for
both the timer module (of which we assume the existence)
and for the sensor module that we defined before. Next, we
define a sensor behavior sensorB that starts with false and
changes according to our sensor module output. We define
sensorB so that we can sample it at the rate of the timer us-
ing snapshot giving us snapSensor. With snapSensor we can
track how many ticks a sensor has been active. We do this by
folding over the event stream and incrementing the counter
by one if an event is true (a car is parked) and by resetting if
an event is false (a spot is open). The output of the module is
defined by mapping the changes of the timeTaken behavior
to a timeout check and returning the violation events.

3 Compilation Overview
In fig. 2, a graphical representation of the compilation pipeline
is shown. In our approach programmers write sensor net-
work applications in our first-order FRP DSL. The DSL is em-
bedded in Scala by using Lightweight Modular Staging (LMS)
[7]. LMS is a modular approach to writing staged applica-
tions in Scala. An LMS program contains regular expressions
(e.g. String) as well as staged expressions (e.g. Rep[String]).
When the LMS program is run, all the normal expressions
are executed and the next stage of the program is produced.
LMS allows users to define different compilation targets

for staging. In our case, the LMS program maps FRP modules
to protectedmodules in C. The protectedmodule architecture
that we target is Sancus [6]. Its compiler expects C programs
that are properly annotated to mark, for example, which data

is private to a module, how to enter the module, etc. These
annotations can be added automatically by the LMS program
because the appropriate information is part of the high-level
EDSL.

The annotated C program in turn is compiled by the San-
cus compiler and produces a hardened deployable module
with strong security properties.

4 FRP for IoT
The EDSL provides two FRP abstractions: Events and Behav-
iors. Note that the Rep[T] types indicate a staged operation,
think of them as operations that are compiled to C. We write
down the meaning of events and behaviors using a simple
mathematical notation.

4.1 Events
Events can be seen as a sequence of discrete timestamped
values:

Eventτ =
{e ∈ P(Time × τ) |

∧ ∀(t, v), (t ′, v ′) ∈ e. t = t ′ ⇒ v = v ′

}
Common examples of events are mouse clicks and button
presses. As shown in the semantics, Events cannot fire mul-
tiple values at the same time.

Below, we discuss the three core operations for events: map,
filter and merge. Note that we use the following notation
from now on to show our API:

ClassName[A]#methodName[B](p: ParamType): ResultType

Keep in mind that for brevity we do not show the implicit
argument ModuleName, all the following methods require it:

map applies a function on each value that the source
event produced. For example, nbs.map(_ ⇒ 0) fires zeros
whenever the nbs fires, since the mapped function throws
away the original values.
Event[A]#map[B](f: Rep[A] ⇒ Rep[B]): Event[B]

filter can ignore values based on a predicate. nbs.filter
(x ⇒ x % 2 == 0), for example, will only produce the even
values of nbs.
Event[A]#filter(p: Rep[A] ⇒ Rep[Boolean]): Event[A]

merge takes two events (of the same type) and returns
an event that fires whenever one of the original events fire.
If both events fire at the same time, the given function com-
bines both values into a single new one. If only one event fires
the given function is ignored. For example, if we have events
ones (producing 1s) and twos (producing 2s), then ones.merge

(twos){ (x, y) ⇒ x + y } produces 1swhen just ones fires,
2s when just twos fires and 3s when both fire.
Event[A]#merge(b: Event[A])

(f: (Rep[A], Rep[A]) ⇒ Rep[A]): Event[A]

REBLS’17, October 23, 2017, Vancouver, Canada B. Calus, B. Reynders, D. Devriese, J. Noorman, F. Piessens

4.2 Behavior
Behaviors can be seen as a value that may change over time.
Semantically you can think about behaviors as regular func-
tions:

Behaviorτ = {b ∈ Time → τ }

We go over all core operations in detail:
constant is a method on the Behavior singleton object. It

creates a constant behavior with a given value.
object Behavior#constant[A](a: A): Behavior[A]

map2 takes a second behavior and a function for combin-
ing the two behaviors’ values to the value for the resulting
behavior.
Behavior[A]#map2[B](fb: Behavior[B],

f: (Rep[A], Rep[B]) ⇒ Rep[C])): Behavior[C]

changes returns all points at which a behavior changes
as an event. An important detail is that in this document
(contrary to traditional FRP [1]) Time is N and not R. What
this conveys is that behaviors can only change discretely so
that changes can be observed.
Behavior[A]#changes: Event[A]

foldp is similar to folding a list, a starting value and an
accumulation function is given to calculate a behavior’s new
‘current’ value on each change. foldp is the only primitive
that provides stateful computations in our language.
Event[A]#foldp[B](f: (Rep[A], Rep[B]) ⇒ Rep[B],

init: Rep[B]): Behavior[B]

4.3 Modules
Modules are the main unit of abstraction in our language.
A module can have asynchronous input and output which
we model with events. Modules can be deployed with local
interactions on one node or distributed on multiple nodes,
the configuration of this deployment is considered future
work of this EDSL.

A module has a name and output and is created through
createModule:
def createModule[A](graphfun: ModuleName ⇒ Option[

OutputEvent[A]]): Module[A]

trait Module[A] {

val name: ModuleName

val output: OutputEvent[A]

}

Preferably, all re-usable standalone components should be
encapsulated in a module, much like classes. What makes
our modules unique is that they can only be connected asyn-
chronously through ExternalEvent:
case class ExternalEvent[A](oe: OutputEvent[A])

(implicit n: ModuleName) extends Event[A]

Modules are then tied together by combining these two
APIs:

val sensorMod =

createModule[Boolean] { implicit n: ModuleName ⇒

val sensor = ButtonEvent(Buttons.button1)

val taken: Behavior[Boolean] =

sensor.foldp((_,state) ⇒ !state , false)

out("button1", taken.changes)

}

val ex = createModule[_] { implicit n: ModuleName ⇒

val sensorE: Event[Boolean] =

ExternalEvent(sensorMod.output)

...

}

Asynchronous connections between modules in sensor
network applications allow for flexible deployment schemes.
Since communication is asynchronous by default, modules
can be deployed locally or distributed. While asynchronous
programming usually makes code harder to read and main-
tain due to callbacks, we integrate the communication prim-
itives into FRP to make this native to the language.

5 Compiling FRP & Mapping to Secure
Modules

There are several possibilities to compile our proposed API.
For example, the application could be compiled and deployed
as a whole as usual without maintaining modules. However,
a malicious operating system or even other malicious pro-
grams on a node could compromise the integrity of the ap-
plication. Sensor networks are becoming more and more
complex and re-use of a similar infrastructure for more than
one application would be beneficial.
Protected module architectures are a way to make this

re-use safe. These architectures guarantee modules to run
isolated from other applications and maintain their security
guarantees even if attackers are allowed to deploy their own
applications on the infrastructure or even tamper with the
OS. To compile a module for such a system, extra information
has to be passed to the compiler. These annotations often get
tedious and, in a sense, development effort and convenience
is traded for stronger security properties. In our approach
we wish to provide programmers with a more automated
architecture.
The FRP module system that we propose maps well on

the interface of such a protected module architecture and
for this paper we focus on Sancus [6]. We implement our
approach using an EDSL with the LMS framework [7]. We
have a working prototype implementation that works on a
physical Sancus development board. It contains an example
of a local car park system for debugging purposes1.

LMS The LMS framework helps us to convert the high-
level FRP code into low-level constructs in the target lan-
guage: C. LMS uses types to make a distinction between
code to be evaluated now (values of type T), in contrast to
code to be evaluated later (values of type Rep[T]). What this
1https://github.com/Tzbob/scala-iot-modules-for-frp/releases/tag/rebls17

https://github.com/Tzbob/scala-iot-modules-for-frp/releases/tag/rebls17

FRP IoT Modules as a Scala DSL REBLS’17, October 23, 2017, Vancouver, Canada

createModule[Boolean] { implicit n: ModuleName ⇒

val sensor: Event[_] = ButtonEvent(Buttons.button1)

val taken: Behavior[Boolean] =

sensor.foldp((_,state) ⇒ !state , false)

out("button1", taken.changes)

}

Figure 3. A Simple Module

means for us is that we can use the full power of Scala as
a meta-language (in values of type T) when writing sensor
network applications (values of type Rep[T]). Modules that
differ slightly, for example, modules that require a node-
specific key, can be generated through the meta-program.
We extended the standard LMS C generations functionality
to output specific annotations for the Sancus project.

Secure Modules with Sancus Basic Sancus requires code
to be annotated accordingly, programmers are required to:
mark a module’s specific entry point (SM_ENTRY) and mark
functions and data internal to a module (SM_FUNC and SM_DATA

). Extensions on Sancus add security primitives to support
event-driven distributed applications and to secure control of
input and output devices used by these applications (SM_INPUT
and SM_OUTPUT).
Sancus guarantees that specific software modules run iso-

lated from other applications and maintains its security guar-
antees even if attackers are allowed to deploy their own
applications on the infrastructure or even tamper with the
OS. However, this all happens through restrictions on the
programming model, annotations have to be placed properly
and an event-driven manner is forced on the programmer to
communicate between distributed modules. The program-
ming model that is proposed in section 4 is fully compatible
with Sancus. Our LMS-based implementation generates all
annotations where needed and the model is naturally event-
driven.

Compiling FRP &Modules Wemake use of the staged ex-
pressions to efficiently compile FRP primitives and modules.
For example, Figure 3 shows a simple module that contains a
couple of high-level abstractions, a first-class button event is
being folded over to build a behavior. Afterwards this behav-
ior is turned into a (named) output event through changes.
These three lines of code define a module that exposes a
boolean event.
In traditional FRP implementations, where performance

and overhead is less important, these primitives are imple-
mented similar to the observer pattern or through a prop-
agation runtime. In our case these primitives are compiled
more efficiently to function calls with mutable state (i.e.,
FRP abstractions are compiled away almost entirely). Fig-
ure 3 compiles to Sancus and its appropriate annotations
(C-macros) in fig. 4. The full functionality of a compiled
module in our system is defined by ‘top’ functions (in this

1 SM_DATA(mod1) bool x32;

2 SM_DATA(mod1) int x65;

3 SM_ENTRY(mod1) void init_mod1 () {...}

4 SM_FUNC(mod1) void input_button1(uint8_t* x1,int x2,int*

x3,bool* x4) {...}

5 SM_FUNC(mod1) void fold_function(int x33 ,bool x34 ,bool*

x35) {

6 bool x37 = x34;

7 if (x37) {

8 bool* x38 = x35;

9 *x38 = true;

10 bool x40 = x32;

11 bool x42 = !x40;

12 x32 = x42;

13 } else {

14 bool* x38 = x35;

15 *x38 = false;

16 }

17 }

18 SM_FUNC(mod1) void changes(bool x50 ,bool* x51 ,bool* x52)

{...}

19 SM_OUTPUT(mod1 ,sm_output);

20 SM_FUNC(mod1) void output(bool x102 ,bool x103) {...}

21 SM_INPUT(mod1 ,top_function ,x75 ,x76) { //top1

22 init_mod1 ();

23 bool x81 = false;

24 int x82;

25 int* x84 = &x82;

26 bool* x86 = &x81;

27 uint8_t* x77 = x75;

28 input_button1(x77 ,x76 ,x84 ,x86);

29 bool x89 = false;

30 bool* x91 = &x89;

31 fold_function(x83 ,x85 ,x91);

32 bool x94 = false;

33 bool x95;

34 bool* x97 = &x95;

35 bool x98 = x94;

36 bool* x99 = &x98;

37 changes(x89 ,x97 ,x99);

38 output(x96 ,x98);

39 }

40 DECLARE_SM(mod1 , 0x1234);

Figure 4. Compiled Foldp

example, top_function). All inputs to the module have their
own top function. This function contains the unrolled and
compiled FRP program related to a specific input event. For
example, a new event from button1 triggers the evaluation
of top_function which in turn evaluates the foldp behavior
and sends its changes as output. This static representation
of the FRP program stays relevant throughout the execution
of the application because of the flavor of FRP that we use.
It is first-order, that is, there are no higher-order operations
to deal with types like Event[Event[A]]. A first-order FRP
application has a static dependency graph since it cannot
change dependencies between FRP primitives at runtime
(yet, it is still powerful enough to write useful applications
see [9]).
In general, each event compiles into a function and two

variables. Figure 4 shows the changes event, the changes

function determines the event’s implementation. The newly

REBLS’17, October 23, 2017, Vancouver, Canada B. Calus, B. Reynders, D. Devriese, J. Noorman, F. Piessens

created variable x94 tracks the propagation, that is, true if the
behavior (foldp) updated, false if it did not. The other vari-
able holds the latest value of foldp. In general, the compiled
function executes the event’s task (e.g., a mapped event will
execute the map function). The status variable keeps track of
whether or not an event has actually fired. These statuses are
passed around to shortcut the FRP program’s computation
when needed, that is, when a filter operation evaluates
to false. The final variable is the result of the computation
that happens in an event’s function, it is only relevant if the
status boolean is true.

In fig. 4, you can see that foldp is compiled into one func-
tion (fold_function) and two variables: x32 and x89. The
former represents the foldps state, which in this example is
a boolean that is flipped every time a new event happens.
Behavior state is internal to the module (SM_DATA). x89 tracks
whether or not a change in the behavior has occurred, in the
case of foldp, such a change is always present as long as the
folded event updated.

6 Future Work
While our prototype works and shows that this idea is feasi-
ble it is not yet mature enough to actually use. An obvious
extension would be to make use of the fact that modules are
regular Scala objects by extending the EDSL with a deploy-
ment EDSL. A Scala EDSL where everything is typechecked
and where one does not need to leave the same codebase
(not even for deployment!) to write and configure an entire
sensor network application would be highly maintainable.
Making use of the type system to statically check topology
properties seems feasible and desirable.

7 Related Work
For related work we focus on some specific projects related
to FRP and macro-programming for the internet of things.

FRP Flask [4] and Regiment [5] are programming languages
for sensor networks geared towards streaming data appli-
cations. Flask is an EDSL with an FRP interface (this time
in Haskell). Regiment is a compiled language which mainly
makes use of an FRP-like abstraction. While Regiment and
Flask are more mature in performance and usability their
communication primitives are limited to a spanning-tree
topology.

Macro Programming Macro-programming languages fo-
cus on programming sensor network applications as a whole

and not just as a collection of nodes. The most extreme form
of this can be seen in projects such as Kairos [2] where the
system infers the distribution topology completely from code.
The other side of the spectrum can be seen in projects such as
TinyOS [3] where modules (components) are connected ex-
plicitly in an RPC-style. Our approach, much like Regiment
and Flask, exposes the communication between nodes as
nice as possible using high-level language concepts such as
FRP. Object-oriented approaches such as AmbientTalk [8] do
not focus on modules and and distributing them but rather
focuses on objects. AmbientTalk uses an actor approach and
supports peer-to-peer topologies.

Acknowledgments
Bob Reynders holds an SB fellowship of the Research Foun-
dation - Flanders (FWO). Dominique Devriese holds a post-
doctoral fellowship of the Research Foundation - Flanders
(FWO).

References
[1] C. Elliott and P. Hudak. Functional reactive animation. In ICFP, pages

263–273. ACM, 1997.
[2] R. Gummadi, O. Gnawali, and R. Govindan. Macro-programming wire-

less sensor networks using kairos. In DCOSS, pages 126–140. Springer,
2005.

[3] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo,
D. Gay, J. Hill, M. Welsh, E. Brewer, and others. Tinyos: An operating
system for sensor networks. In Ambient intelligence, pages 115–148.
Springer.

[4] G. Mainland, G. Morrisett, and M. Welsh. Flask: Staged functional
programming for sensor networks. In ICFP, pages 335–346. ACM, 2008.

[5] R. Newton, G. Morrisett, and M. Welsh. The regiment macroprogram-
ming system. In IPSN, pages 489–498. ACM, 2007.

[6] J. Noorman, P. Agten, W. Daniels, R. Strackx, A. Van Herrewege, C. Huy-
gens, B. Preneel, I. Verbauwhede, and F. Piessens. Sancus: Low-cost
trustworthy extensible networked devices with a zero-software trusted
computing base. In USENIX, pages 479–498, 2013.

[7] T. Rompf and M. Odersky. Lightweight modular staging: a pragmatic
approach to runtime code generation and compiled DSLs. In GPCE,
volume 46, pages 127–136. ACM, 2010.

[8] T. Van Cutsem, E. G. Boix, C. Scholliers, A. L. Carreton, D. Harnie,
K. Pinte, and W. De Meuter. Ambienttalk: programming responsive
mobile peer-to-peer applications with actors. Computer Languages,
Systems & Structures, 40(3):112–136, 2014.

[9] D. Winograd-Cort and P. Hudak. Settable and Non-interfering Signal
Functions for FRP: How a First-order Switch is More Than Enough. In
ICFP, pages 213–225. ACM, 2014.

	Abstract
	1 Introduction
	2 Parking Lot with FRP
	3 Compilation Overview
	4 FRP for IoT
	4.1 Events
	4.2 Behavior
	4.3 Modules

	5 Compiling FRP & Mapping to Secure Modules
	6 Future Work
	7 Related Work
	Acknowledgments
	References

